Original Article

Saxitoxin time–resolved absorption and resonance FT–IR and Raman biospectroscopy and density functional theory investigation of vibronic–mode coupling structure in vibrational spectra analysis

Alireza Heidari1,2*, Jennifer Esposito1, Angela Caissutti1
1Faculty of Chemistry, California South University, Comet St. Irvine, California, USA
2American International Standards Institute, Irvine, California, USA

Abstract. Saxitoxin (STX) is a potent neurotoxin and the best–known paralytic shellfish toxin (PST). Ingestion of Saxitoxin by humans, usually by consumption of shellfish contaminated by toxic algal blooms, is responsible for the illness known as paralytic shellfish poisoning (PSP). Parameters such as FT–IR and Raman vibrational wavelengths and intensities for single crystal Saxitoxin (STX) are calculated using density functional theory and were compared with empirical results. The investigation about vibrational spectrum of cycle dimers in crystal with carboxyl groups from each molecule of acid was shown that it leads to create Hydrogen bonds for adjacent molecules. The obtained values confirm high accuracy and validity of results obtained from calculations.

Keywords: Vibronic structure, vibrational spectra analysis, density functional theory (DFT), Saxitoxin (STX), non–focal functions, becke, correlation functions, Lee–Yang–Parr, time–resolved absorption, resonance, FT–IR, Raman biospectroscopy

Introduction

Saxitoxin (STX) is a potent neurotoxin and the best–known paralytic shellfish toxin (PST). Ingestion of Saxitoxin by humans, usually by consumption of shellfish contaminated by toxic algal blooms, is responsible for the illness known as paralytic shellfish poisoning (PSP). Density Functional Theory (DFT) is one of the most powerful calculation methods for electronic structures [5–7]. Numerous results have been previously studied and indicate successful use of these methods [8–10]. The theory is one of the most appropriate methods for simulating the vibrational wavenumbers, molecular structure as well as total energy. It may be useful to initially consider the calculated results by density functional theory using HF/6–31G*, HF/6–31++G**, MP2/6–31G, MP2/6–31++G**, BLYP/6–31G, BLYP/6–31++G**, BLYP/6–31+G**, B3LYP/6–31G and B3LYP6–31–HEG** approach [11–16]. It should be noted that calculations are performed by considering one degree of quantum interference as well as polarization effects of 2d orbitals in interaction [17–244].

Details of calculations

All calculations of molecular orbital in the base of ab are performed by Gaussian 09. In calculation process, the structure of Saxitoxin (STX) molecule (Fig. 1) is optimized and FT–IR and Raman wavenumbers are calculated using HF/6–31G*, HF/6–31+G**, MP2/6–31G, MP2/6–31++G**, BLYP/6–31G, BLYP/6–31++G**, B3LYP/6–31G and B3LYP6–31–HEG** base. All optimized structures are adjusted with minimum energy. Harmonic vibrational wavenumbers are calculated using second degree of derivation to adjust convergence on potential surface as good as possible and to evaluate vibrational energies at zero point. In optimized structures considered in the current study, virtual frequency modes are not observed which indicates that the minimum potential energy surface is correctly chosen. The optimized geometry is calculated by minimizing the energy relative to all geometrical quantities without enforcing any constraint on molecular symmetry. Calculations were performed by Gaussian 09. The current calculation is aimed to maximize structural optimization using density functional theory.

Vibration analysis

C–H stretching vibrations in single replacement of benzene cycles are usually seen in band range of 3500–4000 cm\(^{-1}\). Weak Raman bands are at 3200 cm\(^{-1}\) and 3210 cm\(^{-1}\). C–C stretching mode is a strong Raman mode at 1200 cm\(^{-1}\). Raman weak band is seen at 1673 cm\(^{-1}\), too. Bending mode of C–H is emerged as a weak mode at 1400 cm\(^{-1}\) and 1410 cm\(^{-1}\) and a strong band at 1300 cm\(^{-1}\) in Raman spectrum. Raman is considerably active in the range of 1500–2000 cm\(^{-1}\) which 1220 cm\(^{-1}\) indicates this issue.

C–H skew–symmetric stretching mode of methylene group is expected at 3190 cm\(^{-1}\) and its symmetric mode is expected at 3000 cm\(^{-1}\). Skew–symmetric stretching mode of CH\(_2\) in Saxitoxin (STX) has a mode in mid–range of Raman spectrum at 3000–3550 cm\(^{-1}\). When this mode is symmetric, it is at 3100 cm\(^{-1}\) and is sharp. The calculated wavenumbers of higher modes are at 3050 cm\(^{-1}\) and 3150 cm\(^{-1}\) for symmetric and skew–symmetric stretching mode of methylene, respectively.

Scissoring vibrations of CH\(_2\) are usually seen at the range of 1550-1600 cm\(^{-1}\) which often includes mid–range bands. Weak bands at 1550 cm\(^{-1}\) are scissoring modes of CH\(_2\) in Raman spectrum. Moving vibrations of methylene are usually seen at 1470 cm\(^{-1}\). For the investigated chemical in the current study, these vibrations are at 1340 cm\(^{-1}\) were calculated using density functional theory. Twisting and rocking vibrations of CH\(_2\) are seen in Raman spectrum at 950 cm\(^{-1}\) and 1190 cm\(^{-1}\), respectively, which are in good accordance with the results at 900 cm\(^{-1}\) and 1200 cm\(^{-1}\), respectively.

In a non–ionized carboxyl group (COOH), stretching vibrations of carbonyl [C=O] are mainly observed at the range of 1850–1950 cm\(^{-1}\). If dimer is considered as an intact constituent, two stretching vibrations of carbonyl for symmetric stretching are at 1750–1800 cm\(^{-1}\) in Raman spectrum. In the current paper, stretching vibration of carbonyl mode is at 1810 cm\(^{-1}\) which is a mid–range value.

Stretching and bending bands of hydroxyl can be identified by width and band intensity which in turn is dependent on bond length of Hydrogen. In dimer form of Hydrogen bond, stretching band of O–H is of a strong Raman peak at 1370 cm\(^{-1}\) which is due to in–plain metamorphosis mode. Out–of–plain mode of O–H group is a very strong mode of peak at 1050 cm\(^{-1}\) of Raman spectrum. The stretching mode of C–O (H) emerges as a mid–band of Raman spectrum at 1250 cm\(^{-1}\).

Lattice vibrations are usually seen at the range of 0–850 cm\(^{-1}\). These modes are induced by rotary and transferring vibrations of molecules and vibrations and including hydrogen bond. Bands with low wave numbers of hydrogen bond vibrations in FT–IR and Raman spectrum (Fig. 2) are frequently weak, width and unsymmetrical.
Rotary lattice vibrations are frequently stronger than transferring ones. Intra–molecular vibrations with low wavenumbers involving two–bands O–H …O dimer at 90 cm$^{-1}$, 200 cm$^{-1}$ and 250 cm$^{-1}$ are attributed to a rotary moving of two molecules involving in–plain rotation of molecules against each other.

Summary and conclusion

Calculations of density functional theory using HF/6–31G*, HF/6–31++G**, MP2/6–31G, MP2/6–31++G**, BLYP/6–31G, BLYP/6–31++G**, B3LYP/6–31G and B3LYP6–31–HEG** levels were used to obtain vibrational wavenumbers and intensities in single crystal of Saxitoxin (STX). Investigation and consideration of vibrational spectrum confirm the formation of dimer cycles in the investigated crystal with carboxyl groups from each Hydrogen molecule of acid protected from adjacent molecules. The calculated vibrational spectrum which obtains from calculations of density functional theory is in good accordance with recorded empirical values which indicates successful simulation of the problem. The obtained results indicate that the results obtained from theoretical calculations are valid through comparing with empirical recorded results.

Acknowledgement

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT1201009373495. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figure. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript.

Conflict of Interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent–licensing arrangements), or non–financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

References

9. Heidari A. A bio–spectroscopic study of DNA density

Figure 2 3D Simulation of (A) FT–IR spectrum and (B) Raman spectrum of Saxitoxin (STX).

18. Heidari A. Measurement the amount of vitamin D2 (ergocalciferol), vitamin D3 (cholecalciferol) and absorbable calcium (Ca2+), iron (II) (Fe2+), magnesium (Mg2+), phosphate (PO43−) and zinc (Zn2+) in apricot using high–performance liquid chromatography (HPLC) and spectroscopic techniques. J Biom Biostat 7: 292, 2016.

19. Heidari A. Spectroscopy and quantum mechanics of the helium dimer (He2+), neon dimer (Ne2+), argon dimer (Ar2+), krypton dimer (Kr2+), xenon dimer (Xe2+), radon dimer(Rn2+) and ununoctium dimer (Uuo2+) molecular cations. Chem Sci J 7: e112, 2016.

52. Heidari A. Graph theoretical analysis of zigzag polyhexamethylene biguanide, polyhexamethylene adipamide, polyhexamethylene biguanide gauze and polyhexamethylene biguanide hydrochloride (PHMB) boron nitride nanotubes (BNNTs), amorphous boron nitride nanotubes (a–BNNTs) and hexagonal boron nitride nanotubes (h–BNNTs). J Appl Comput Math 5:e143, 2016.

54. Heidari A. A comparative study of conformational behavior of isoretinin (13–Cis Retinoic Acid) and tretinoin (All–Trans Retinoic Acid (ATRA)) nano particles as anti–cancer nano drugs under synchrotron radiations using hartree–fock (HF) and density functional theory (DFT) methods. Insights in Biomed 1:2, 2016.

68. Heidari A. Electronic coupling among the five nanomolecules shuts down quantum tunneling in the presence and absence of an applied magnetic field for indication of the dimer or other provide different influences on the magnetic behavior of single molecular magnets (SMMs) as qubits for quantum computing. Glob J Res Rev. 4: 2, 2017.

69. Heidari A. Polymorphism in nano–sized graphene ligand–induced transformation of Au_{38}–xAg/xCu_{x}(SPH–tBu)_{24} to Au_{36}–xAg/xCu_{x}(SPH–tBu)_{14} (x = 1–12) nanomolecules for synthesis of Au_{144}–xAg/xCu_{x}(SR)_{60}–(SC)_{60}–(SC)_{60}–(SC)_{12}–(PET)–(H)_{60}–(p–MB)_{60}–(F)_{60}–(Cl)_{60}–(Br)_{60}–(I)_{60}–(At)_{60}–(Uus)_{60} and (SC_{6}H_{3}){60} nano clusters as anti–cancer nano drugs. J Nanomater Mol Nanotechnol: 6: 3, 2017.

70. Heidari A. Biomedical resource oncology and data mining to enable resource discovery in medical, medicinal, clinical, pharmaceutical, chemical and translational

91. Heidari A. Investigation of medical, medicinal, clinical and pharmaceutical applications of estradiol,

110. Heidari A. Different high–resolution simulations of medical, medicinal, clinical, pharmaceutical and

111. Heidari A. Vibrational Decahertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. International J Biomed 7:335–340, 2017.

116. Heidari A. Vibrational Decahertz (daHz), Hectohertz (hHz), Kiloherz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahez (THz), Petahertz (PHz), Exahertz (EHz), Zettahez (ZHz) and Yottahertz (YHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. Madridge J Analytical Sci Instrum 2:41–46, 2017.

132. Heidari A. Pros and cons controversy on heteronuclear correlation experiments such as heteronuclear single–quantum correlation spectroscopy (HSQC), heteronuclear multiple–quantum correlation spectroscopy (HMQC) and heteronuclear multiple–bond correlation spectroscopy (HMBC) comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. EMS Pharma J 1: 002–008, 2018.

143. Heidari A. Vivo 1H or proton NMR, 31C NMR, 13N NMR and 31P NMR spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. Ann Biomet Biostat 1:1001, 2018.

149. Heidari A. Grazing–incidence small–angle X–ray

151. Heidari A. Niobium, technetium, ruthenium, rhodium, hafnium, rhenium, osmium and iridium ions incorporation into the nano polymeric matrix (NPM) by Immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Nanomed Nanotechnol 3:000138, 2018.

163. Heidari A. Fornacite, orotic acid, rhamnetin, sodium ethyl xanthate (SEX) and spermine (spermidine or polyamine) nanomolecules incorporation into the nanopolymeric matrix (NPM). Int J Biochem Biomolecule 4:1–19, 2018.

165. Heidari A. Cadaverine (1,5–pentanediamine or pentamethylenediamine), diethyl azodicarboxylate (DEAD or DEADCAT) and putrescine (tetramethylenediamine) nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Hiv Sexual Health Open Access Journal 1: 4–11, 2018.

166. A. Heidari A. Improving the performance of nano endofullerenes in polyaniline nanostructure–based bio–
170. Heidari A. Uranocene (U(C6H5)3) and bis(Cyclooctatetraene) iron (Fe(C6H5)2 or Fe(COT)2)–enhanced precatalyst preparation stabilization and initiation (EPPSI) nano molecules. Chem Reports 1:1–16, 2018.
175. Heidari A. A clinical and molecular pathology investigation of correlation spectroscopy (COSY), exclusive correlation spectroscopy (ECOSY), total correlation spectroscopy (TOCSY), heteronuclear single–quantum correlation spectroscopy (HSQC) and heteronuclear multiple–bond correlation spectroscopy (HMBC) comparative study on malignant and benign human cancer cells, tissues and tumors treatment under synchrotron and synchrocytolon radiations using cyclotron versus synchrotron, synchrocytolon and the large hadron collider (LHC) for delivery of proton and helium ion (Charged Particle) beams for oncology radiotherapy. European J Adv Eng Technol 5:414–426, 2018.
184. Gobato R, Heidari A, Mitra A. Using the quantum chemistry for genesis of a nano biomembrane with a combination of the elements Be, Li, Se, Si, C and H. ResearchGate. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/32620181, 2018.
187. Heidari A. Fucitol, pterodactyladene, DEAD or DEADCAT (DiEthyl AzoDiCarboxyIaTe), skatole, the nanoputians, thebacon, pikachurin, tie fighter, spermidine and mirasorvone nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocytolon radiations. Glob Imaging Insights 3: 1–8, 2018.
188. Dadvar E, Heidari A. A Review on separation

190. Heidari A, Buckminsterfullerene (fullerene), bullvalene, dickite and josiphos ligands nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human hematology and thromboembolic diseases prevention, diagnosis and treatment under synchrotron and synchrocyclotron radiations. Glob Imaging Insights 3:1–7, 2018.

197. Heidari A. Curious chloride (CmCl3) and titanochloride (TiCl4)–enhanced precatalyst preparation stabilization and initiation (EPSSI) nano molecules for cancer treatment and cellular therapeutics. J. Cancer Res Therap Interven 1:01–10, 2018.

199. Heidari A. C60 and C70–encapsulating carbon nanotubes incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Integr Mol Med 5:1–8, 2018.

210. Heidari A. Analogous nano compounds of the form M (C_{11}H_{20}) Exist for M = (Nd, Tb, Pu, Pa, Np, Th, and Yb)–enhanced precatalyst preparation stabilization and initiation (EPPSI) nano molecules. Integr Mol Med 5:1–8, 2018.

226. Heidari A, Esposito J, Caissutti A. The importance of attenuated total reflectance fourier transform infrared (ATR–FTIR) and Raman biospectroscopy of single–walled

237. Heidari A. The importance of the power in CMOS inverter circuit of synchrotron and synchrocyclotron radiations using 50 (nm) and 100 (nm) technologies and reducing the voltage of power supply. Radiother Oncol Int 1:1002–1015, 2019.

